研究方向:
为了实时观察活细胞中蛋白质复合体结构以及其在亚结构上动态变化的过程,我们实验室希望提升活细胞超分辨成像分辨率到优于10纳米水平。它将远超目前所有超分辨显微镜的性能,其核心限制因素是奈奎斯特采样定律及单位时间荧光分子发出的光子数。因此实验室将探索稀疏解卷积完美恢复所有高频信号的稀疏边界条件和数学证明,改造迭代解卷积形式和整合先验知识,提高光子数-分辨率转化效率。光学上,通过搭建结构光与如4Pi单分子定位显微镜结合的多种双模态超分辨显微镜,用深度学习引入样本特异的复杂先验知识实现终极分辨率。另一方面,我也希望打破目前大多数研究者仅聚焦于推进显微镜物理性能、很少与其他单细胞组学测量手段结合的现状。以从生理状态的细胞中获取最多信息为目标,发展“事件驱动智能超分辨率显微镜”,实现超分辨成像后自动单细胞分选,从而将超分辨成像与如单细胞转录组结合,得到如数字分裂细胞动态图谱。生物学应用方面,我们实验室希望聚焦在两个方面:一个是将成像与空间组学结合,系统解析糖尿病发病过程中胰岛素分泌在不同尺度上失调的过程和机制,另一方面,我们以不同tau蛋白突变导致不同类型的疾病表现为切入点,综合应用活细胞超分辨、在体微型化双光子以及PET等多尺度成像手段,在细胞、组织以及整体水平揭示tau蛋白突变如何导致错误tau缠结形成以及在不同细胞、脑区中传播的机制。
代表性成果
1. Zhao W, Zhao S, Li L, Huang H, Xing S, Zhang Y, Qiu G, Han Z, Shang Y, Sun D, Shan C, Wu R, Gu L, Zhang S, Chen R, Xiao J, Mo Y, Wang J, Ji W, Chen X, Ding B, Liu Y, Mao H, Song B, Tan J, Liu J, Li H*, Chen L*. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy, Nat Biotechnol., 2022;40(4):606-617.
2. Zhao Z, Zeng F, Wang H, Wu R, Chen L, Wu Y, Li S, Shao J, Wang Y, Wu J, Feng Z, Gao W, Hu Y, Wang A, Cheng H, Zhang J*, Chen L*, Wu H*. Encoding of social novelty by sparse GABAergic neural ensembles in the prelimbic cortex. Sci Adv. 2022;8(35):eabo4884.
3. Ren H, Li Y, Han C, Yu Y, Shi B, Peng X, Zhang T, Wu S, Yang X, Kim S, Chen L*, Tang C*. Pancreatic α and β cells are globally phase-locked. Nat Commun. 2022;13(1):3721.
4. Zong W, Wu R*, Chen S, Wu J, Wang H, Zhao Z, Chen G, Tu R, Wu D, Hu Y, Xu Y, Wang Y, Duan Z, Wu H, Zhang Y, Zhang Y, Wang A*, Chen L*, Cheng H. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging, Nat Methods. 2021;18(1):46-49.
5. Zheng X, Duan R, Li L, Xing S, Ji H, Yan H, Gao K, Wang J, Wang J*, Chen L*. Live-cell superresolution pathology reveals different molecular mechanisms of Pelizaeus-Merzbacher disease, Science Bulletin, 2020 ; 65(24): 2061-2064.
6. Dong D, Huang X, Li L, Mao H,Mo Y, Zhang G,Zhang Z, Shen J, Liu W, Wu Z,Liu G, Liu Y, Yang H, Gong Q, Shi K*, Chen L*, Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome, Light Sci Appl. 2020;9:11. doi: 10.1038/s41377-020-0249-4. eCollection 2020.
7. Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, Wei L, Mao H, Lal A, Xi P, Tang L, Zhang Y, Liu Y, Tan S*, Chen L*. Fast, long-term super-resolution imaging with Hessian structured illumination microscopy, Nat Biotech., 2018;36(5):451-459. doi: 10.1038/nbt.4115.
8. Zong W, Wu R, Li M, Hu Y, Li Y, Li J, Rong H, Wu H, Xu Y, Lu Y, Jia H, Fan M, Zhou Z, Zhang Y*, Wang A*, Chen L*, Cheng H. Fast High-resolution Miniature Two-photon Microscopy for Brain Imaging in Freely-behaving Mice. Nat Methods. 2017;14(7):713-719.
9. Yuan T, Liu L, Zhang Y, Wei L, Zhao S, Zheng X, Huang X, Boulanger J, Gueudry C, Lu J, Xie L, Du W, Zong W, Yang L, Salamero J, Liu Y*, Chen L*. Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling. Dev Cell. 2015, 35(1):120-30.
10. Zong W, Zhao J, Chen X, Lin Y, Ren H, Zhang Y, Fan M, Zhou Z, Cheng H, Sun Y*, Chen L*. Large-field high-resolution two-photon digital scanned light-sheet microscopy. Cell Res. 2015, 25(2):254-7.