研究方向
人体内最重要的信号分子是神经系统的神经递质。它们负责神经细胞之间、神经细胞与靶细胞之间的信息传输。没有神经递质,人就不可能思考。科学界普遍认为神经递质几十年前就基本都找到了。本实验室认为很可能还有脑内的其它神经递质,因为以前找到的神经递质依赖神经系统之外的检测方式。本实验室用生物化学方法分离含神经递质的亚细胞结构。从中分离、分析化学分子。之后进一步确定是否是新的神经递质分子。
睡眠的重要性无需赘述。但睡眠的机理了解有限。本实验室通过遗传筛选和生化分离等途径寻找可能影响睡眠的分子。通过改变分子活性追踪它们调控睡眠的功能。
GPCR是最常见的受体分子,被内源配体分子激活。它们同时也是最常见的药物靶点。本实验室寻找受体新的配体,并研究其生理和病理功能。
蛋白质在蛋白激酶作用下磷酸化,在磷酸酶作用下去磷酸化。蛋白质磷酸化调控体内很多功能。本实验室通过分离纯化蛋白激酶的上游激酶和磷酸酶,寻找新的生化调控途径,研究磷酸化及其调控的酶如何参与新的生理和病理过程。
代表性论文
1. Liu Y, Shan L, Liu T, Li J, Chen Y, Sun C, Yang C, Bian X, Niu Y, Zhang C, Xi and Rao Y (2023). Molecular and cellular mechanisms of the first social relationship: A conserved role of 5-HT from mice to monkeys, upstream of oxytocin. Neuron 111:1-18
2. Liu YX, Wang TV, Cui YF, Li CY, Jiang LF and Rao Y (2022). STE20 phosphorylation of AMPK related kinases revealed by biochemical purifications combined with genetics. J Biol Chem 298, 101928
3. Liu YX, Wang TV, Cui YF, Gao SX and Rao Y (2022). Biochemical purification uncovers mammalian sterile 3 (MST3) as a new protein kinase for multifunctional protein kinases AMPK and SIK3. J Biol Chem 298, 101929.
4. Liu, Z.Y., Jiang, L.F., Li, C.Y., Li, C.G., Yang, J.Q., Yu, J.J., Mao, R.B. and Rao Y (2022). LKB1 is physiologically required for sleep from Drosophila melanogaster to the Mus musculus Genetics. vol 221(3), iyac082
5. Deng BW, Li Q, Liu XX, Cao Y, Li BF, Qian YJ, Xu R, Mao RB, Zhou EX, Zhang WX, Huang J and Rao Y (2019). Chemoconnectomics: mapping chemical transmission in Drosophila. Neuron 101:876-893.
6. Dai XH, Zhou EX, Yang W, Zhang XH, Zhang WX and Rao Y (2019) D-Serine Made by Serine Racemase in Drosophila Intestine Plays a Physiological Role in Sleep, Nature Communications ,10:1986.
7. Chen BQ, Zhu, ZJ, Wang YY, Ding XH, Guo XB, He MG, Fang W, Zhou SB, Zhou Q, Huang AL, Chen TM, Ni DS, Gu YP, Liu JN, Lei H and Rao Y (2018). Nature vs. nurture in human sociality: multi-level genomic analyses of social conformity. J Hum Genet 63:605-619.
8. Liu WW, Liang XH, Li YN, Gong JX, Yang Z, Zhang YH, Zhang JX and Rao Y (2011). Social regulation of aggression mediated by pheromonal activation of Or65a olfactory receptor neurons in Drosophila. Nature Neurosci 7:896-902.
9. Liu Y, Jiang Y, Si Y, Kim J-Y, Chen Z-F, and Rao Y (2011). Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brain of male mice. Nature 472:95-99.
10. Zhou C, Rao Y and Rao Y (2008). A subset of octopaminergic neurons are important for Drosophila aggression. Nature Neurosci 11:1059-1067.
11. Jiang H, Guo W, Liang XH and Y Rao (2005). Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120:123-135.
12. Wu W, Wong K, Chen JH, Jiang ZH, Dupuis S, Wu JY and Rao Y (1999). Directional guidance of neuronal migration in the olfactory system by the secreted protein Slit. Nature 400:331-336.
13. Rao Y, Jan LY and Jan YN (1990). Similarity of the product of the Drosophila neurogenic gene big brain to transmembrane channel proteins. Nature 345:163-167.